584 research outputs found

    The pathogenesis of zoonotic viral infections:Lessons learned by studying reservoir hosts

    Get PDF
    Zoonotic viral infections that cause severe disease or even death in some people may be asymptomatic or mild in reservoir hosts. Comparison of the pathogenesis of these two host categories may potentially explain the difference in disease. However, infections in reservoir hosts are often neglected. Therefore, we compared the pathogenesis of rabies virus, macacine alphaherpesvirus, West Nile virus, Puumala orthohantavirus, monkeypox virus, Lassa mammarenavirus, H5N1 highly pathogenic avian influenza, Marburg virus, Nipah virus, Middle East respiratory syndrome, and simian/human immunodeficiency viruses in both humans and reservoir hosts. We showed that most aspects of the pathogeneses were remarkably similar. The remaining differences lead to the identification of tipping points in the pathogeneses that are important for explaining the disease outcome in severe human cases. Further elucidating these tipping points by studying zoonotic viral infections in their reservoir hosts may teach us how to reduce the severity of zoonotic viral diseases in humans.</p

    Reverse Zoonosis of COVID-19: Lessons From the 2009 Influenza Pandemic

    Get PDF
    Over the past decade, pandemics caused by pandemic H1N1 (pH1N1) influenza virus in 2009 and severe acute respiratory syndrome virus type 2 (SARS-CoV-2) in 2019 have emerged. Both are high-impact respiratory pathogens originating from animals. Their wide distribution in the human population subsequently results in an increased risk of human-to-animal transmission: reverse zoonosis. Although there have only been rare reports of reverse zoonosis events associated with the ongoing coronavirus disease 2019 (COVID-19) pandemic from SARS-CoV-2 so far, comparison with the pH1N1 influenza pandemic can provide a better understanding of the possible consequences of such events for public and animal health. The results of our review suggest that similar factors contribute to successful crossing of the host species barriers in both pandemics. Specific risk factors include sufficient interaction between infected humans and recipient animals, suitability of the animal host factors for productive virus infection, and suitability of the animal host population for viral persistence. Of particular concern is virus spread to susceptible animal species, in which group housing and contact network structure could potentially result in an alternative virus reservoir, from which reintroduction into humans can take place. Virus exposure in high-density populations could allow sustained transmission in susceptible animal species. Identification of the risk factors and serological surveillance in SARS-CoV-2-susceptible animal species that are group-housed should help reduce the threat from reverse zoonosis of COVID-19

    Salbutamol powder inhaled from the Diskhaler compared to salbutamol as nebulizer solution in severe chronic airways obstruction

    Get PDF
    AbstractThe bronchodilatory effect of four doses of salbutamol powder (1·6 mg) from a multi-dose dry powder inhaler, the Diskhaler, was compared to the effect of 2·5 ml salbutamol nebulizer solution (1 mg ml−1) from a jet nebulizer, Pari Inhalierboy, in a randomized, double-blind, double-dummy, cross-over study performed on 2 consecutive days. Thirty-two patients with severe chronic obstructive pulmonary disease (COPD), a mean FEV1=29% of predicted value, and at least a 15% increase in FEV1 after inhaling 5 mg nebulized terbutaline were included. Twenty-eight patients were evaluated: 17 women and 11 men with a mean age of 67 years (range 53–82 years). The mean increases in FEV1 were greater after inhalation via the Diskhaler, although there was no difference in the patients' subjective assessment of the treatments. The powder inhaler was also effective in patients with the lowest baseline FEV1 and the lowest inspiratory peak flow through the inhaler. The study demonstrates that dry powder inhalation of salbutamol via a Diskhaler is at least as effective as inhalation of salbutamol via a jet nebulizer in providing bronchodilation in patients with severe COPD

    Tropism of Highly Pathogenic Avian Influenza H5 Viruses from the 2020/2021 Epizootic in Wild Ducks and Geese

    Get PDF
    Highly pathogenic avian influenza (HPAI) outbreaks have become increasingly frequent in wild bird populations and have caused mass mortality in many wild bird species. The 2020/2021 epizootic was the largest and most deadly ever reported in Europe, and many new bird species tested positive for HPAI virus for the first time. This study investigated the tropism of HPAI virus in wild birds. We tested the pattern of virus attachment of 2020 H5N8 virus to intestinal and respiratory tissues of key bird species; and characterized pathology of naturally infected Eurasian wigeons (Mareca penelope) and barnacle geese (Branta leucopsis). This study determined that 2020 H5N8 virus had a high level of attachment to the intestinal epithelium (enterotropism) of dabbling ducks and geese and retained attachment to airway epithelium (respirotropism). Natural HPAI 2020 H5 virus infection in Eurasian wigeons and barnacle geese also showed a high level of neurotropism, as both species presented with brain lesions that co-localized with virus antigen expression. We concluded that the combination of respirotropism, neurotropism, and possibly enterotropism, con-tributed to the successful adaptation of 2020/2021 HPAI H5 viruses to wild waterbird populations.</p

    Distribution patterns of influenza virus receptors and viral attachment patterns in the respiratory and intestinal tracts of seven avian species

    Get PDF
    This study assessed the presence of sialic acid α-2,3 and α-2,6 linked glycan receptors in seven avian species. The respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, golden pheasant, ostrich, and mallard were tested by means of lectin histochemistry, using the lectins Maackia amurensis agglutinin II and Sambucus nigra agglutinin, which show affinity for α-2,3 and α-2,6 receptors, respectively. Additionally, the pattern of virus attachment (PVA) was evaluated with virus histochemistry, using an avian-origin H4N5 virus and a human-origin seasonal H1N1 virus. There was a great variation of receptor distribution among the tissues and avian species studied. Both α-2,3 and α-2,6 receptors were present in the respiratory and intestinal tracts of the chicken, common quail, red-legged partridge, turkey, and golden pheasant. In ostriches, the expression of the receptor was basically restricted to α-2,3 in both the respiratory and intestinal tracts and in mallards the α-2,6 receptors were absent from the intestinal tract. The results obtained with the lectin histochemistry were, in general, in agreement with the PVA. The differential expression and distribution of α-2,3 and α-2,6 receptors among various avian species might reflect a potentially decisive factor in the emergence of new viral strains
    corecore